At one time or another in our lives, we come in contact with someone whom we consider our teacher, supervisor, mentor, or role model. In many instances, such a person may also become our friend. I was fortunate during my professional preparation to have all of these and more in one individual. During my professional preparation, this person emphasized the importance of knowing human anatomy because he believed it was a keystone to understanding athletic performance and to preventing, recognizing, treating, and rehabilitating athletic trauma. This emphasis has inspired me throughout the preparation of this book. I'd like to thank Robert Nicolette, former head athletic trainer (1957–1969) at the University of Illinois, on behalf of all of us who were fortunate enough to know him. He has touched everyone we work with as a result of our association with him. I dedicate this book to him to express how much I appreciated him.
CONTENTS

PART I General Concepts of Anatomy 1

Chapter 1 Structures ... 3
 Bones .. 4
 Joints ... 8
 Muscles .. 12
 Levers ... 17
 Nerves ... 19
 Blood Vessels ... 20
 Other Tissues ... 23
 Motor Unit .. 24
 Learning Aids ... 26

Chapter 2 Movement ... 29
 Anatomical Locations ... 30
 Planes and Axes ... 30
 Fundamental Movements .. 32
 Learning Aids ... 34

PART II Upper Extremity 37

Chapter 3 The Shoulder ... 39
 Bones of the Shoulder Girdle ... 39
 Bones of the Shoulder Joint ... 42
 Joints and Ligaments of the Shoulder Girdle 43
 Ligaments of the Shoulder Joint 45
 Other Ligaments of the Shoulder 46
 Fundamental Movements and Muscles of the Shoulder Girdle 47
 Fundamental Movements and Muscles of the Shoulder Joint 51
 Combined Actions of the Shoulder Girdle and Shoulder Joint 60
 Learning Aids ... 60
CONTENTS

Chapter 4
The Elbow and Forearm .. 67
- Bones of the Elbow and Forearm ... 67
- Joints and Ligaments of the Elbow and Forearm 70
- Fundamental Movements and Muscles of the Elbow and Forearm 72
- Learning Aids ... 77

Chapter 5
The Wrist and Hand ... 81
- Bones of the Wrist and Hand .. 82
- Joints and Ligaments of the Wrist and Hand .. 83
- Fundamental Movements of the Wrist and Hand 85
- Extrinsic Muscles of the Wrist and Hand .. 86
- Intrinsic Muscles of the Hand .. 92
- Muscles of the Thumb ... 94
- Learning Aids ... 97

Chapter 6
Nerves and Blood Vessels of the Upper Extremity 103
- Nerves of the Brachial Plexus ... 106
- Major Arteries of the Upper Extremity .. 109
- Major Veins of the Upper Extremity .. 111
- Learning Aids ... 114

PART II
Summary Tables ... 116
- Articulations of the Upper Extremity .. 116
- Muscles, Nerves, and Blood Supply of the Upper Extremity 119

PART III
The Head, Spinal Column, Thorax, and Pelvis 127

Chapter 7
The Head ... 129
- Bones of the Head ... 129
- Joints of the Head .. 134
- Ligaments of the Head ... 136
- Sinuses .. 136
- Fundamental Movements and Muscles of the Head 137
- Learning Aids ... 140

Chapter 8
The Spinal Column and Pelvis ... 143
- Bones of the Spinal Column .. 144
- Ligaments of the Spinal Column ... 148
- Fundamental Movements and Muscles of the Spinal Column 151
- Bones of the Pelvis ... 159
- Ligaments of the Pelvis ... 162
- Fundamental Movements and Muscles of the Pelvis 163
- Learning Aids ... 164
Chapter 13 The Lower Leg, Ankle, and Foot 261
Bones of the Lower Leg ... 261
Bones of the Foot ... 263
Joints and Ligaments of the Ankle and Foot 266
Fundamental Movements of the Lower Leg, Ankle, and Foot . 270
Muscles of the Lower Leg, Ankle, and Foot 272
Learning Aids ... 282

Chapter 14 Nerves and Blood Vessels of the Lower Extremity . 287
Nerves of the Lumbosacral Plexus 287
Major Arteries of the Lower Extremity 292
Major Veins of the Lower Extremity 296
Learning Aids ... 299

PART IV Summary Tables 301
Articulations of the Lower Extremity 301
Muscles, Nerves, and Blood Supply of the Lower Extremity 304

Answers to End-of-Chapter Questions 311 | Suggested Readings 315
Index 317 | About the Author 329
Some may say the human body is the most fascinating machine ever designed. Science has long studied it and attempted to improve it through various methods, even going so far as trying to make parts interchangeable or to create new synthetic parts. Learning about oneself through the study of the human body could lead a person to a longer and healthier life. This can all begin with a basic understanding of the various elements making up the human body.

If this exposure to the study of human anatomy is a one-time experience, *Kinetic Anatomy* provides a good overview of the human body's various structures. For the student who seeks further study of human anatomy, *Kinetic Anatomy* provides the basics that can facilitate more in-depth study, in particular of the human body's physiological functions involving the anatomical structures presented in this text.

Goals of the Text

The goals of *Kinetic Anatomy* are (1) to familiarize students with the vocabulary of human anatomy, (2) to describe the essentials of human anatomy for movement, and (3) to provide students with the knowledge needed to pursue healthy living.

Having a firm understanding of the vocabulary of human anatomy allows you to communicate effectively with colleagues, physicians, therapists, educators, coaches, allied health personnel, and others using a universal language of human anatomy.

This text also gives readers a firm concept of how the human body is constructed and how it moves by discussing bones, tying the bones together to make articulations (joints), placing muscles on the bones (crossing joints), and then observing how the joints move when the muscles contract. The book also discusses the nerves (including the central nervous system's brain and spinal nerves and the peripheral nervous system) and blood vessels (including the heart) as well as the lungs, all of which provide elements essential for skeletal movement, but the main emphasis is on putting together the human body for the purpose of studying movement. Knowing what structures are involved and how they should function allows you to identify problems and correct them to enhance physical activity.

Finally, this book imparts knowledge that allows the pursuit of healthy living. Knowing about your body can alert you to potential problems and, with other acquired information, help you prevent or resolve those problems and lead a healthful lifestyle.

Organization of the Text

The text and illustrations are devoted to the structures that play a primary role in moving the human body: bones, ligaments, joints, muscles, and the nerves and blood vessels supplying innervations and circulation to those structures. This edition also addresses anatomical structures not often considered when studying the anatomy of movement: the brain, the heart, and the lungs. The purpose of these additions is to provide entry-level students with further understanding of anatomical structures involved in movement. Although the bones, ligaments, muscles, nerves, and blood vessels are the primary structures that create motion in the human body, other structures of the nervous system (brain, peripheral nervous system), the heart, and the respiratory system are introduced to show how these structures contribute to human movement.

To that end, this text is organized into four parts. Part I discusses the basic concepts of anatomy. The remainder of the text, like many textbooks in the areas of kinesiology and biomechanics, divides the body into the upper extremity...
(part II of this text); the head (brain), spinal column, pelvis, and thorax (heart and lungs) (part III); and lower extremity (part IV). Each anatomical chapter in parts II, III, and IV follows the same format: bones, joints and ligaments, muscles, and, where appropriate, the inclusion of three major organs also essential for movement (the brain, the heart, and the lungs). Parts II, III, and IV also include summary tables for muscles, bones, joints, ligaments, movements, nerves, and blood vessels, and these tables have been supplemented to include structures not found in previous editions of *Kinetic Anatomy*.

Updates to the Third Edition

The third edition of *Kinetic Anatomy* includes the following anatomical structures: the head, the brain, the heart, and the lungs. These structures, while not as obvious as bones, joints, and muscles, play major roles in human movement. The central nervous system (brain and spinal nerves), the peripheral nervous system, the heart, and the lungs all function to allow muscles to move bones and create motion in joints.

With more and more people participating in organized sports and personal fitness activities, there has been an increased interest in a possible unfortunate aspect of this participation: head trauma. *Kinetic Anatomy* looks at the anatomy of the head and brain, including the central and peripheral nervous systems as well as the blood vessels of the circulatory system. The vast network of blood vessels (numerous arteries and veins with multiple branches) is discussed, with identification of names and anatomical areas. In-depth investigation of both the nervous system and circulatory system is encouraged, requiring advanced anatomical study far beyond the entry-level information provided in *Kinetic Anatomy*.

In addition to the new material just mentioned, further discussion is presented regarding joint strength and movement, the function of muscles (agonists, antagonists, fixers or stabilizers, synergists), levers, and exercise. These additions are presented to enhance your understanding of muscle function if future study in kinesiology and human biomechanics is desired.

The third edition of *Kinetic Anatomy* also grants students access to a new web component, *Musculoskeletal Anatomy Review*. See page xiv for more information on this resource.

These updates to *Kinetic Anatomy* make it a more inclusive entry-level text for undergraduate and secondary students and others seeking basic information about the anatomical structures of the human body in relation to movement.

Key Features of the Text

When one studies human anatomy, many devices are available to supplement learning. Human cadavers; audiovisual aids including photos, illustrations, models, and software programs; and numerous other means are provided to assist learning. *Kinetic Anatomy* additionally facilitates learning by providing a cost-free and readily available aid for comprehending how the body utilizes various aspects of human anatomy to allow movement: the hands-on experience. Throughout the book, readers will find “Hands On” boxes that provide instructions for feeling specific anatomical structures either on themselves or on a partner. In a very basic way, this makes the study of human anatomy a personal and practical experience available to everyone.

This text also provides an extensive listing of terms. Key terms are set in bold throughout the text and listed at the end of each chapter. This is important because it gives readers the opportunity to review what they were exposed to in the text. An understanding of the key terms helps ensure that readers have obtained the information about the anatomical structures presented in the chapter.

Detailed anatomical illustrations show readers the key structures that contribute to human movement in the anatomical areas discussed in any particular chapter. The artist has made every effort to accurately present these structures as they appear in the human body. Extensive use of cadaver photography would obviously produce a more exact illustration of the structures, but the expense of such reproduction would take the cost far beyond what might be considered an entry-level textbook.
To enhance understanding, the text also features photographs that illustrate movements resulting from the activity of the anatomical structures discussed, utilizing the old adage that a picture is worth a thousand words. These illustrations include appropriate labels to help readers find the structures presented in the text. The photographs help readers further understand what the structures being discussed actually do when they create movement.

“Focus on . . .” sidebars are presented throughout the book to illustrate circumstances in everyday activity that relate to the specific anatomical structures in the text. Health conditions commonly mentioned in everyday life are discussed to hopefully advance readers’ understanding of these conditions. References to these various conditions in the print and electronic media should be more meaningful to readers as a result of these sidebars.

Each chapter ends with a set of learning aids, including a review of the key terms used in the chapter, suggested learning activities for students to complete, a set of multiple-choice questions, and a set of fill-in-the-blank questions. (Answers to the questions are provided at the end of the book.) Students can use these learning aids to ensure they have a firm grasp of the key points of the chapter content as well as to prepare for tests and quizzes. Additionally, functional movement exercises at the end of several chapters challenge readers’ knowledge of the various functions of muscles. Although examples of possible answers are presented at the end of the book, there are many, many alternative answers, and readers are encouraged to use the text, the Musculoskeletal Anatomy Review web resource, the instructor, and fellow students if enrolled in an entry-level human anatomy course to seek additional answers to these functional movement exercises.

Finally, each part ends with summary tables. These summary tables provide a quick resource when seeking the components of a particular joint, its type, bones, ligaments, and movements as well as the components of a muscle including its origin, insertion, action, nerve supply, and blood supply. Whether students are answering questions posed in the text or preparing a paper or presentation on a particular anatomical structure or human movement, the summary tables can assist as a quick reference.

In addition to these text features, the book is also accompanied by the Musculoskeletal Anatomy Review web resource. More information on this resource can be found on page xiv. Students can access the Musculoskeletal Anatomy Review by visiting www.HumanKinetics.com/MusculoskeletalAnatomyReview.

Instructor Resources

Instructors have access to a full array of ancillary materials that support the text.

- **Image bank.** The image bank includes all the figures, tables, and photos from the text. Instructors can use these images to supplement lecture slides, create handouts, or develop other teaching materials for their classes.

- **Instructor guide.** The instructor guide includes many valuable tools to help instructors build a lecture. For each chapter, instructors will find an overview of the chapter, the chapter objectives, a lecture outline, lecture aids (additional items that would be useful to have on hand when covering a chapter's content), and additional activities that students can complete during class to enhance their learning experiences through doing and seeing.

- **Test package.** The test package includes more than 600 multiple-choice, true-or-false, and fill-in-the-blank questions. Instructors can use these questions to create or to supplement tests or quizzes.

Instructors can access these ancillary resources by visiting www.HumanKinetics.com/KineticAnatomy.
A group of people at Human Kinetics (HK) has been responsible for the guidance needed to bring this edition of *Kinetic Anatomy* to completion. Dr. Loarn Robertson, former senior acquisitions editor, was responsible for deciding a new edition of *Kinetic Anatomy* would be a worthy addition to the entry-level study of human anatomy. Upon his retirement, this project was assumed by Melinda Flegel, Human Kinetics’ new senior acquisitions editor. Inheriting this project in midstream, with my ideas and the senior acquisition editor’s ideas already being enacted, was a task she not only accepted but also graciously guided to a successful completion. Amanda Ewing, developmental editor, took over the task of making sure I put together a textbook and ancillary materials that accomplished my goals for the text in an accurate and attractive format that would appeal to anyone interested in seeking an entry-level experience for learning human anatomy. Her comments, suggestions, and questions along with the ability to keep me on task played a major role in the completion of this edition.

The new illustrations in this edition are the result of the efforts of Joanne Brummett, the design, art, and photo coordinator at Human Kinetics. Her contributions and those of her outstanding staff in finding new artwork and additional photographs have made the illustrations supporting the written word an excellent adjunct to this edition’s new subject matter.

I must thank Dr. Rainer Martens, HK founder, for approving the project that has resulted in the creation of *Kinetic Anatomy*. His contributions in the areas of sport, physical education, health education, and recreation have received world-wide recognition and appreciation by authors, teachers, and students everywhere. His thoughts and actions in the publishing business opened avenues in these areas at a time when it was sorely needed and now is so widely accepted.

These people have made working with Human Kinetics a pleasure and, hopefully, have produced a publication that will make the study of human anatomy enjoyable for anyone interested in learning about the human body and how it moves.
Figure 1.14 Adapted, by permission, from W.C. Whiting and S. Rugg, 2006, *Dynatomy: Dynamic human anatomy* (Champaign, IL: Human Kinetics), 15.

Figure 7.1 Adapted, by permission, from J. Watkins, 2010, *Structure and function of the musculoskeletal system*, 2nd ed. (Champaign, IL: Human Kinetics), 30.

Figure 7.2 Adapted, by permission, from L.A. Cartwright and W.A. Pitney, 2011, *Fundamentals of athletic training*, 3rd ed. (Champaign, IL: Human Kinetics), 55.

Figure 7.3 Adapted, by permission, from J. Watkins, 2010, *Structure and function of the musculoskeletal system*, 2nd ed. (Champaign, IL: Human Kinetics), 29.

Figure 7.4 Adapted, by permission, from L.A. Cartwright and W.A. Pitney, 2011, *Fundamentals of athletic training*, 3rd ed. (Champaign, IL: Human Kinetics), 67.

Figure 7.6 Adapted, by permission, from J. Loudon, M. Swift, and S. Bell, 2008, *The clinical orthopedic assessment guide*, 2nd ed. (Champaign, IL: Human Kinetics), 28.

Figure 7.7 Reprinted, by permission, from J. Watkins, 2010, *Structure and function of the musculoskeletal system*, 2nd ed. (Champaign, IL: Human Kinetics), 30.

Figure 7.8 Reprinted, by permission, from J. Loudon, M. Swift, and S. Bell, 2008, *The clinical orthopedic assessment guide*, 2nd ed. (Champaign, IL: Human Kinetics), 20, 24.

Figure 7.9 Adapted, by permission, from J. Watkins, 2010, *Structure and function of the musculoskeletal system*, 2nd ed. (Champaign, IL: Human Kinetics), 30.

Figure 7.12 Reprinted, by permission, from L.A. Cartwright and W.A. Pitney, 2011, *Fundamentals of athletic training*, 3rd ed. (Champaign, IL: Human Kinetics), 68.

Figure 9.15 Adapted, by permission, from W.L. Kenney, J.H. Wilmore, and D.L. Costill, 2012, *Physiology of sport and exercise*, 5th ed. (Champaign, IL: Human Kinetics), 144.

Figure 9.17 Adapted, by permission, from W.L. Kenney, J.H. Wilmore, and D.L. Costill, 2012, *Physiology of sport and exercise*, 5th ed. (Champaign, IL: Human Kinetics), 145.

Figure 9.19 Adapted, by permission, from W.L. Kenney, J.H. Wilmore, and D.L. Costill, 2012, *Physiology of sport and exercise*, 5th ed. (Champaign, IL: Human Kinetics), 165.

Figure 9.20 Adapted, by permission, from W.L. Kenney, J.H. Wilmore, and D.L. Costill, 2012, *Physiology of sport and exercise*, 5th ed. (Champaign, IL: Human Kinetics), 165.

Figure 10.2a,b Reprinted, by permission, from R.S. Gotlin, 2008, *Sports injuries guidebook* (Champaign, IL: Human Kinetics), 62.

Figure 10.3 Reprinted, by permission, from W.L. Kenney, J.H. Wilmore, and D.L. Costill, 2012, *Physiology of sport and exercise*, 5th ed. (Champaign, IL: Human Kinetics), 165.

Figure 10.4 Reprinted, by permission, from W.L. Kenney, J.H. Wilmore, and D.L. Costill, 2012, *Physiology of sport and exercise*, 5th ed. (Champaign, IL: Human Kinetics), 165.
Figure 10.5 Adapted, by permission, from W.L. Kenney, J.H. Wilmore, and D.L. Costill, 2012, *Physiology of sport and exercise*, 5th ed. (Champaign, IL: Human Kinetics), 165.

Figure 10.16 Adapted, by permission, from W.L. Kenney, J.H. Wilmore, and D.L. Costill, 2012, *Physiology of sport and exercise*, 5th ed. (Champaign, IL: Human Kinetics), 145.

Figure 10.20 Adapted, by permission, from W.L. Kenney, J.H. Wilmore, and D.L. Costill, 2012, *Physiology of sport and exercise*, 5th ed. (Champaign, IL: Human Kinetics), 165.
Musculoskeletal Anatomy Review includes hundreds of 3-D images of the human body to aid students in their study of anatomy. This engaging supplement to the text offers a regional review of structural anatomy with exceptionally detailed, high-quality graphic images—the majority provided by Primal Pictures. Students can mouse over muscles and click for muscle identification. This online feature offers students a self-paced and self-directed review of the musculoskeletal anatomy, providing an intensely visual interface through which students may gain a clear understanding.

Each chapter of Musculoskeletal Anatomy Review features a pretest and posttest evaluation to help students pinpoint knowledge gaps and test their retention. The pretest can be taken multiple times and is generated randomly so it will never be the same, but the posttest may be taken only once. Test results can be printed and turned in so instructors have the option to use the tests as a grading tool.

As students proceed through this review of musculoskeletal anatomy, they will encounter interactive learning exercises that will quiz them on key concepts and help them apply what they’ve learned about manual muscle testing or range of motion assessment in helping a virtual client.

There may be concepts presented in Musculoskeletal Anatomy Review that students have not learned in the past. Whenever possible, a learning aid will be provided to assist students in retention of the material. The learning and review aids may be mnemonics, simple organization of a group of muscles, or just a way to understand the terminology and locations of structures. Please take time to learn using the aids provided; if you do, your retention of the material is apt to surprise you.

Students can access Musculoskeletal Anatomy Review by going to www.HumanKinetics.com/MusculoskeletalAnatomyReview.
General Concepts of Anatomy
This page intentionally left blank.
Human anatomy has been defined simply as the structure of organisms pertaining to humankind. A structure is, by one definition, something composed of interrelated parts to form an organism, and an organism is simply defined as a living thing. The body is made up of four different types of tissues (a collection of a similar type of cells). Connective tissue makes up bone, cartilage, and soft tissue such as skin, fascia, tendons, and ligaments. Muscle tissue is divided into three types: skeletal, which moves the parts of the skeleton; cardiac, which causes the pumping action of the heart; and smooth, which lines arterial walls and other organs of the body. Nerve tissue is divided into neurons, which conduct impulses involving the brain, the spinal cord, spinal nerves, and cranial nerves, and neuroglia, which are specifically involved in the cellular processes that support the neurons both metabolically and physically. The fourth type of tissue is known as epithelial tissue. There are four varieties, and all are involved with the structures of the respiratory, gastrointestinal, urinary, and reproductive systems.

The study of human anatomy as it pertains to movement concentrates on the bones, joints (and associated ligaments), and muscles responsible for the human body’s movement. Additionally, the role of the nervous system in stimulating muscle tissue; the role of the vascular system in providing the muscle tissue with energy and removing by-products; the bone, joint, and muscle components of the body’s lever systems; and the effects of exercise need to be studied. Kinetic Anatomy presents brief overviews of the respiratory system, the circulatory system, and the autonomic nervous system. Although human anatomy also includes other structures such as the endocrine system, digestive system, reproductive system, urinary system, and sensory organs, this text concentrates specifically on those anatomical structures chiefly responsible for producing movement of the human organism.
Proper vocabulary is extremely important when discussing anatomy. Common terms make communication with others (physicians, coaches, therapists, athletic trainers) much easier, and it is essential that a student of human anatomy become familiar with standard terminology presented in this chapter. Knowledge of the structures and common terms used to describe movement anatomically also facilitates the use of specific coaching principles; the use of therapeutic techniques involving human movement for prevention, treatment, and rehabilitation of various physical conditions; and the application of scientific principles to human movement.

Although all systems of the human organism can be said to contribute in some unique way to movement, this text emphasizes those systems (skeletal, articular, muscular, nervous, and circulatory) that directly accomplish movement. Primary concentration is on the following structures: bones, ligaments, joints, and muscles producing movement, with additional comments about the nerves and blood vessels in each specific anatomical area.

Bones

The body contains 206 bones. Bones have several functions, such as support, protection, movement, mineral storage, and blood cell formation. Arrangements of bones that form joints and the muscular attachments to those bones determine movement. Bones are classified by their shapes into four groups: long bones, short bones, flat bones, and irregular bones. Some authors also distinguish a fifth type of bone, known as sesamoid bones, which are small, nodular bones embedded in a tendon (figure 1.1). The bones that provide the framework for the body and that make movement possible are classified as long bones (figure 1.2). A long bone has a shaft, known as the diaphysis, and two large prominences at either end of the diaphysis, known as the epiphyses. Early in life
the epiphysis is separated from the diaphysis by a cartilaginous structure known as the **epiphyseal plate**. It is from these epiphyseal plates at both ends of the diaphysis that the bone grows; thus, this area is often referred to as the growth plate. Once a bone has reached its maximum length (maturity), the epiphyseal plate “closes” (bone tissue has totally replaced the cartilaginous tissue), and the epiphysis and diaphysis become one continuous structure. Around the entire bone is a layer of tissue known as the **periosteum**, where bone cells are produced. Additionally, the very ends of each bone’s epiphyses are covered with a material known as **articular cartilage**. This covering provides for smooth movement between the bones that make up a joint and protects the ends of the bones from wear and tear.

Short bones differ from long bones in that they possess no diaphysis and are fairly symmetrical. Bones in the wrist and ankle are examples of short bones. Flat bones, such as the bones of the head, chest, and shoulder, get their name from their flat shape. Irregular bones are simply bones that cannot be classified as long, short, or flat. The best example of an irregular bone is a vertebra of the spinal column. An additional classification that some anatomists recognize is sesamoid (sesame seed–shaped) bones. These oval bones are free-floating bones usually found within tendons of muscles. The kneecap (patella) is the largest sesamoid bone in the body; others are found in the hand and the foot.

Several terms are commonly used to describe the features of bones. These features are usually referred to as **anatomical landmarks** and are basic to one’s anatomical vocabulary. A **tuberosity** on a bone is a large bump (figure 1.3). A **process** is a projection from a bone (figure 1.3). A **tubercle** is a smaller bump (figure 1.4). All three of these bony prominences usually serve as the attachment for other structures. A **spine**, or **spinous process**, is typically a longer and thinner projection of bone, unlike any of the previously mentioned prominences (figure 1.5). The large bony knobs at either end of a long bone are known as the **condyles** (figure 1.6). The part of the condyle that articulates (joins) with another bone is known as the **articular surface** (figure 1.2). Smaller bony knobs that sometimes appear just above the condyles of a bone are known as **epicondyles** (figure 1.4). A **fossa** is a smooth, hollow surface on a bone and usually functions as a source of attachment for other structures (figure 1.3). A smaller and flatter smooth surface is a **facet** (figure 1.7). Facets also serve as attachments for other structures. A **notch** is an area on a bone that appears to be cut out and allows for the passage of other structures such as blood vessels or nerves (see figure 1.8). Similar in function to a notch but appearing as a hole in a bone is a **foramen** (figure 1.5).
Figure 1.3 Landmarks of the shoulder bones: anterior (front), posterior (back), and lateral (side) views.

Figure 1.4 Landmarks of the thigh and leg bones, anterior and posterior views.